诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
重庆深化普通高中课程改革 推动多样化特色发展******
记者 云钰
1月6日下午,重庆市第一中学校与挪威办学历史最悠久的学校之一——特隆赫姆教堂高中,结为友好学校。双方将在教师培训、课程开发、人文交流等方面开展深度交流,进一步丰富重庆一中集约多元的国内、国际课程资源。
“目前,学校已经建成6个学科课程创新基地,17门重庆市精品选修课程,12类160余门校本选修课程,并设置了小设想、小制作、小发明、小论文等科技‘四小活动’,以及国际课程、STEAM国际创新课程等特色项目,为学生的成长和发展搭建更加多元的空间。”该校相关负责人介绍。
近年来,重庆着力全面实施新课程、使用新教材(简称“双新”),推动普通高中多样化、特色化发展,普通高中超大班额基本消除,高中阶段毛入学率达到98.61%,提前实现“普及”目标。
消除大班额
实施办学条件改善计划
近三年累计投入11.88亿元,新增学位11700个
“仰望星空,你可以看到更为广阔的宇宙。”1月4日,重庆南开中学地理探究室老师正带领学生体验一堂别开生面的地理课。
在教室中间,摆放着一台可触摸操控的超大智能交互平板,两侧陈列了十多种地理教学模型,教室的天花板上悬挂着一个大型活动式星图演示仪。通过这些设备,学生们可以探求天体运行规律,观看地表形态及其变迁等。
“星空太美了!”“我们超喜欢上地理课,不仅弄懂了学科知识难点,还激发了我们对天文学的兴趣!”课堂上,学生们发出啧啧赞叹。
“我们学校的所有教室均配备多媒体交互式一体机,建成数字化实验室。”重庆南开中学相关负责人称,重庆南开中学积极推进“互联网+教育”深度融合,特别是在2020年新冠疫情期间,该校打造了“录播教学+直播评讲+App批阅作业+微信答疑”线上教育新模式,构建起“立体化”的线上教育体系,确保了“停课不停学”,为后续线下教学打好了基础。
市教委相关负责人介绍,近年来,我市大力实施普通高中办学条件改善计划,近三年累计投入中央和市级经费11.88亿元,教学科研仪器设备投入增加1.85亿元,数字终端增加1.69万台;新建普通高中学校12所,新增学位11700个。
特别值得一提的是,目前,我市已将全市公办普通高中学校生均公用经费财政拨款标准,从每生每年1000元提到1300元,全面取消普通高中“择校费”。
此外,针对城乡教育发展的薄弱环节和难点,重庆还实施了“十四五”县域普通高中发展提升行动计划,提出了“合理优化学校布局、提高经费投入水平、实施标准化建设工程、健全教师补充激励机制”等19条具体举措,着力提升县域普通高中办学水平和条件,不断缩小普通高中学校办学差距。
打造多彩特色课程
校园“各美其美”
建设普通高中课程创新基地162个,精品选修课程650门
“学校在确保开齐开足国家规定的各类课程基础上,还从德育类课程、竞赛类课程、科技创新类课程等维度,拓展化实施国家课程,培育学生的核心素养。”前不久,在重庆巴蜀中学举行的第四届课程博览会上,该校展示的涵盖人文、科学、体育、艺术等100多门校本选修课,吸引了众人的目光。
“通过《重庆古迹、遗址寻踪》课程,同学们寻访重庆历史建筑、抗战遗址,了解家乡历史文化;在《唐诗里的朋友圈》课堂上,学生们可以和网络博主共同赏析诗词之美。”该校相关负责人介绍,近年来,巴蜀中学构建了“潜能·个性”课程体系,打造了技术、语文、生物、英语、历史5个重庆市普通高中课程创新基地,16门课程入选重庆市普通高中精品选修课程,激发学生的学习兴趣,培养了学生的创新精神和能力。
不仅仅是巴蜀中学,多彩特色的课程体系让重庆市的高中校园“各美其美”。
重庆市第十一中学校开发了“大阅读”校本课程群,构建学校“大阅读”课程体系;重庆市第十八中学校打造了“四C课程”体系,从“树本课程”“砺新课程”“海纳课程”“百川课程”拓展人才培养多元化路径;重庆外国语学校构建与国际接轨的外语校本课程体系,对全市的外语阅读教学起到积极的带头作用;万州高级中学着力打造航空特色课程,先后有93名学生被录取为飞行员,被誉为“培养飞行员的摇篮”。
市教委相关负责人表示,近年来,全市普通高中学校扎实推进多样特色发展路径,通过开设丰富多彩的选修课程、培育优势学科,打造办学特色,推动学校由分层发展转向分类发展,更好地满足学生多元化学习和发展需求。
目前,全市已累计立项建设普通高中课程创新基地162个,60个校本教研基地,精品选修课程650门,评选360个普通高中优秀学生社团,系统构建起具有重庆特色的课程资源体系。
稳妥推进新高考
深化综合素质评价
将其作为高中毕业的必要条件和高校招生录取的重要参考
“选课前,我还一直拿不定主意。还好有学校选课走班指导中心的老师帮我评估和针对性的指导,我才做出了适合我的选课方案。”1月5日,重庆市第八中学校一名高三学生对记者这样说道。
“高考改革是教育领域综合改革的重点领域和关键环节,作为高考改革的核心设计要点,我们探索了一种具有学校自身特色的‘选课走班’教学模式。”重庆市第八中学校相关负责人介绍,为充分满足学生个性化发展的要求,学校开齐了“3+1+2”选科模式中的12种组合,并成立了选课走班指导中心,综合评估分析学生的兴趣爱好、学业成绩、成长记录、特长与潜能等不同特点,并根据全国高校招生动向、将来就业状况等社会因素对学生进行针对性的指导。
“为了充分尊重学生的选择,学校为他们的个性化发展提供丰富的课程支撑,每周还开设了生涯规划课,邀请高校各专业教授、社会各行业精英到校开展讲座,指导学生科学认知自我,结合高校专业选考科目要求,选择更科学合理的高考科目组合。”该负责人说。
据市教委相关负责人介绍,重庆从2018年开始实行新高考,即采取“3+1+2”新高考模式,不分文理科,语文、数学、外语为统考科目,在历史和物理科目中首选1门科目,然后在思想政治、地理、化学、生物学科目中再选2门科目参加选择性考试。
这几年来,我市各普通高中稳妥推进高考综合改革,实行新学业水平合格性考试,有序推进普通高中选课走班教学,创新开展学生综合素质评价工作,目前全市已构建了覆盖德智体美劳五育融合的综合素质评价体系,并将综合素质评价作为高中毕业的必要条件和高校招生录取的重要参考。
“未来重庆还将进一步优化普通高中学校布局,新建、改扩建一批普通高中学校,实施普通高中标准化建设工程,促进普通高中内涵提升。”市委教育工委书记、市教委主任黄政表示,接下来,我市将着力推进普通高中学科课程创新基地、精品选修课程、优秀学生社团等项目建设,促进全市普通高中多样化有特色发展;提升普通高中治理效能,坚决杜绝违规跨区域掐尖招生,健全教师补充激励机制,提高教师能力素质,整体提升全市普通高中办学水平。